About Lesson
In this tutorial, we will learn how to detect a vehicle from a video using the Haar Cascades classifier. For the well-known tasks, the classifiers/detectors already exist, for example: detecting things like faces, cars, smiles, eyes, and license plates.
Installing the modules
To install the OpenCV module and some other associated dependencies, we can use the pip command:
pip install opencv-python
Download the Haar Cascades
To install the OpenCV module and some other associated dependencies, we can use the pip command:
pip install opencv-python
Download the Haar Cascades
- Follow the URL:
https://github.com/AdityaPai2398/Vehicle-And-Pedestrian-Detection-Using-Haar-Cascades/tree/master/Main%20Project/Main%20Project/Car%20Detection - Click on cars.xml
- Click on Raw and then press Ctrl + S. This will help you save the Haar Cascade file for vehicle detection.
Source code
import cv2 car_cascade = cv2.CascadeClassifier("haarcascades_car.xml") def detect_cars(frame): cars = car_cascade.detectMultiScale(frame, 1.15, 4) for (x, y, w, h) in cars: cv2.rectangle(frame, (x, y), (x+w, y+h), color=(155, 155, 0), thickness=2) return frame def Simulator(): car_video = cv2.VideoCapture("video.mp4") while car_video.isOpened(): ret, frame = car_video.read() control_key = cv2.waitKey(1) if ret: cars_frame = detect_cars(frame) cv2.imshow('Frame', cars_frame) else: break if control_key == ord('q'): break if __name__ == '__main__': Simulator()