Course Content
TensorFlow
    About Lesson

    Given below is a list of commonly used attributes

    1. tensorflow.shape
    2. tensorflow.zeros
    3. tensorflow.ones
    4. tensorflow.dtype

     

    tensorflow.shape

    tensorflow.shape used for returning the shape of the tensor

    import tensorflow as tf  
      
    # Shape of tensor  
    m_shape = tf.constant([ [10, 11],  
                            [12, 13],  
                            [14, 15] ]                        
                         )   
    m_shape.shape

    The output will be TensorShape([Dimension(3), Dimension(2)])

     

    tensorflow.zeros

    tensorflow. zeros used for creating a tensor of the given dimension with all elements being zero

    import tensorflow as tf  
    # Create a vector of 0  
    print(tf.zeros(10))

    The output will be Tensor(“zeros:0”, shape=(10,), dtype=float32)

     

    tensorflow.ones

    tensorflow.ones used for for creating a tensor of the given dimmension with all elements being one

    import tensorflow as tf  
    # Create a vector of 1  
    print(tf.ones([10, 10]))              
    # Create a vector of ones with the same number of rows as m_shape  
    print(tf.ones(m_shape.shape[0]))  
    # Create a vector of ones with the same number of column as m_shape  
    print(tf.ones(m_shape.shape[1]))  
      
    print(tf.ones(m_shape.shape))

    The output will be Tensor(“ones_1:0”, shape=(10, 10), dtype=float32) Tensor(“ones_2:0”, shape=(3,), dtype=float32) Tensor(“ones_3:0”, shape=(2,), dtype=float32) Tensor(“ones_4:0”, shape=(3, 2), dtype=float32)

     

    tensorflow.dtype

    tensorflow.dtype used to find the data type of the elements of the tensor

    import tensorflow as tf  
    m_shape = tf.constant([ [10, 11],  
                            [12, 13],  
                            [14, 15] ]                        
                         )   
    print(m_shape.dtype) 

     

    The output will be <dtype: ‘int32’>

    import tensorflow as tf  
      
    # Change type of data  
    type_float = tf.constant(3.123456789, tf.float32)  
    type_int = tf.cast(type_float, dtype=tf.int32)  
    print(type_float.dtype)  
    print(type_int.dtype)

    The output of the above code will be <dtype: ‘float32’> <dtype: ‘int32’>